Stable Diffusion(SD)是开源的文生图大模型,随着相关技术的发展,已经迭代了多个版本(关于版本间不同的特性可以搜索查询,这里以1.5版本为例进行介绍,如和其兼容的lora模型比较多),并且其支持多种可控图像生成技巧,这篇短文将要向大家介绍相关的Stable Diffusion的使用技巧,不足支持欢迎读者提出意见建议并予以补充。
首先我们采用webui的方式使用比较便捷,参考文献1即为我们的Stable Diffusion V2.1版本的webui的jupyter notebook代码链接。具体使用可以在本地或colab里边。这篇短文将介绍SD的一般用法和基于LoRA模型的风格化用法。
一、一般用法:这里没有特别要强调说明的地方,主要是要写好提示词。这里举一个示例,提示词为:Two yellow orioles sing amid the green willows. 效果图为:

二、LoRA模型,lora模型是一种小模型技术,其显著的优点表现在:1、LoRA 通过低秩适应方法在较少的参数增加下微调大模型,资源消耗较少。2、在特定任务或小数据集上快速适应大模型,提升生成质量或特定任务的表现。3、LoRA模型可以作为额外模块加载到现有大模型中,灵活性高。使用LoRA模型的方法如下,1、首先,下载LoRA模型,如参考文献1所示;2、将下载的模型拷贝到lora的模型目录,如/content/stable-diffusion-webui/models/Lora,然后更新webui加载最新加入的lora模型(设置扫描lora模型路径),提示词为:Two yellow orioles sing amid the green willows. SONG DYNASTY FLOWER AND BIRD PAINTING如下图所示。

其中该界面的操作流程为:settings–>additional networks–>Extra paths to scan for LoRA models(设置为/content/stable-diffusion-webui/models/Lora)–>apply settings–>Reload UI。在上面的图中,我们用到了一个LoRA模型,具体可以参考引文1。
下一篇相关文章将介绍ControlNet的相关用法,欢迎读者继续关注,提出问题和意见建议。
References
Leave a Reply